Structural Properties of Twisted Reed-Solomon Codes with Applications to Cryptography
نویسندگان
چکیده
We present a generalisation of Twisted Reed– Solomon codes containing a new large class of MDS codes. We prove that the code class contains a large subfamily that is closed under duality. Furthermore, we study the Schur squares of the new codes and show that their dimension is often large. Using these structural properties, we single out a subfamily of the new codes which could be considered for codebased cryptography: we show that these codes resist existing structural attacks for Reed–Solomon-like codes, i.e. methods for retrieving the code parameters from an obfuscated generator matrix.
منابع مشابه
A general construction of Reed-Solomon codes based on generalized discrete Fourier transform
In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes enjoy nice algebraic properties just as the classic one.
متن کاملThe dimension of subcode-subfields of shortened generalized Reed-Solomon codes
Reed-Solomon (RS) codes are among the most ubiquitous codes due to their good parameters as well as efficient encoding and decoding procedures. However, RS codes suffer from having a fixed length. In many applications where the length is static, the appropriate length can be obtained by an RS code by shortening or puncturing. Generalized Reed-Solomon (GRS) codes are a generalization of RS codes...
متن کاملUsing Reed-Solomon codes in the $\left( U\mid U+V\right)$ construction and an application to cryptography
In this paper we present a modification of Reed-Solomon codes that beats the GuruwamiSudan 1− √ R decoding radius of Reed-Solomon codes at low rates R. The idea is to choose Reed-Solomon codes U and V with appropriate rates in a (U | U + V ) construction and to decode them with the Koetter-Vardy soft information decoder. We suggest to use a slightly more general version of these codes (but whic...
متن کاملA construction of binary linear codes from Boolean functions
Boolean functions have important applications in cryptography and coding theory. Two famous classes of binary codes derived from Boolean functions are the Reed-Muller codes and Kerdock codes. In the past two decades, a lot of progress on the study of applications of Boolean functions in coding theory has been made. Two generic constructions of binary linear codes with Boolean functions have bee...
متن کاملGeneralized subspace subcodes with application in cryptology
Most of the codes that have an algebraic decoding algorithm are derived from the Reed Solomon codes. They are obtained by taking equivalent codes, for example the generalized Reed Solomon codes, or by using the so-called subfield subcode method, which leads to Alternant codes and Goppa codes over the underlying prime field, or over some intermediate subfield. The main advantages of these constr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.07003 شماره
صفحات -
تاریخ انتشار 2018